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A new scheme for solving multi-level non-LTE radiative transfer problems is described. In 
this scheme the radiation field is related to the source function by an approximate radiative 
transfer operator. This operator is used to set up the linearized nonlocal statistical equilibrium 
equations for the population numbers with small amounts of computing time. These equations 
have a characteristic and simple structure which enable a fast solution. The approximate 
statistical equilibrium equations are combined with the exact rate equations such that the final 
solution always is exact. The basic methods described can handle velocity fields, partial 
redistribution, and complex geometries and are ideal for future applications to the numerical 
solution of radiative hydrodynamics problems with radiation transport in lines and continua. 
The methods form the basis of a non-LTE program that is more general than the often used 
code LINEAR-B. Calculations made so far indicate that the new method also is more stable 
and faster by typically a factor of ten. 0 1985 Academic Press. Inc. 

1. INTRODUCTION 

The transport of radiation in spectral lines plays an important role in determin- 
ing the energy and momentum balance in the outer layers of stellar atmospheres. 
One goal of non-LTE (non-local thermodynamic equilibrium) theory is the 
calculation of the number densities of atoms in various levels and the radiation 
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fields in the lines, such that these are consistent with one another. The early 
methods, such as the complete linearization method of Auer and 
Mihalas [l, 11, 18,251 were mainly developed for calculating the structure of and 
radiation coming from stationary atmospheres. 

During the last ten years we have witnessed a rapid evolution in the 
understanding of dynamic phenomena in stellar atmospheres. However, thus far 
most studies of such problems have included the interactions between radiation and 
matter in a very primitive way. We know of no such study, for example, which has 
included the energy transfer in spectral lines in a fully consistent way. The reason 
for this is that the complexities of these interactions makes numerical solutions 
extremely expensive. To overcome this barrier, great strides have been made 
recently to develop new techniques [Z, 33 which are very fast, but which sacrifice 
the high accuracy attainable by present-day standard techniques. 

The present paper deals with a new method for the numerical solution of multi- 
level non-LTE problems. It is ideal for problems involving many frequencies, 
angles, and depth points. The method is therefore particularly well suited for studies 
involving velocity fields and it will eventually be included in a radiation 
hydrodynamics code. The essential idea of the method is to take numerical advan- 
tage of certain simplifications which are made possible by the physical nature of 
emission processes in spectral lines. It is not the purpose of the present article to 
describe these simplifications in detail; a recent review article by Rybicki [4] con- 
tains a thorough account of several aspects of these problems. 

Previous work related to the present paper presented a linear iterative technique 
for solving the equivalent two-level atom non-LTE problem [5], a linearization 
method for solving the same problem [6, 71 and a linearization method for solving 
the equivalent two-level problem with partial redistribution [S]. Three years of 
experience with these methods have convinced us of the usefulness of this approach 
to non-LTE problems. Future work will concentrate on developing methods for 
solving many-level problems (- lO-loo), non-LTE problems in multi-dimensional 
geometries and a method for solving multi-level problems with partial 
redistribution. 

The work described in this paper is relevant for studying radiative transfer non- 
LTE problems. However, the character of the radiative transfer equation as a 
Boltzman equation suggests that some of the techniques described here may also 
have applications to other problems. 

The outline of this paper is as follows: In Section 2 we formulate the standard 
non-LTE multi-level problem. In Section 3 we linearize the statistical equilibrium 
equations (or rate equations) and the radiative transfer equation, closely following 
Kalkofen [9]. We then show how to precondition [lo, 6) the statistical 
equilibrium equations and the radiative transfer equation in a way which enables 
the solution of problems with strong numerical cancellation, which arise from 
“passive” scatterings at large optical depth. In Section 4 we introduce sim- 
plifications in the numerical representation of radiative transfer processes, which 
lead to rapid methods for setting up and solving the statistical equilibrium 
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equations [S, 71. In Section 5 we describe some calculations which have been made 
to test the convergence properties of the present scheme and in Section 6 we briefly 
outline some generalizations of the present methods. 

2. FORMULATION OF THE PROBLEM 

The solution of a multi-level non-LTE problem involves the simultaneous 
solution of the statistical equilibrium equations 

ni f P,- 2 njPji=O, 
i#i j#i 

the particle conservation equation 

and the radiative transfer equation 

(2.1) 

(2.2) 

(2.3) 

For a discussion of these equations the reader is referred to [ 11. In these equations 
ni is the number of atoms per unit volume in level i, P, is the total probability per 
time unit that an atom in level i will make a transition to level j, I,, is the specific 
intensity, K,~ the absorption coefficient, jyP the emission coefficient, and n, is the 
number of atomic energy states considered. The cosine of the angle between the ray 
and the normal of the atmosphere is equal to p. The total number of atoms per unit 
volume is n,,,, which is assumed to be a given quantity. 

The probabilities P, can be written as 

P,= R,+C,, (2.4) 

where R, is the contribution from radiative transitions and C, is the contribution 
from collisions with other particles. Our main concern here is the radiative tran- 
sitions, which may be written 

R, = A, + B&, i>j, 

= B,&, i<j 
(2.5) 

for bound-bound transitions. For bound-free transitions essentially the same terms 
appear (cf. [l, p. 1291). These terms can be included using almost the same 
procedure as for bound-bound transitions, and they have been included in the 
general multilevel non-LTE program written by one of the authors [17]. In 
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Eq. (2.5), A, is the Einstein spontaneous emission probability and B, is the coef- 
ficient of stimulated emission (i >j) and absorption (i <j), respectively. 

The main source of the numerical difficulties of solving non-LTE problems comes 
from the quantity TV which may be written 

where #“,, is the absorption profile, normalized so that 

1 co 1 T I s &,dvdp=l. 
-1 0 

The quantity Jii couples the particle densities n, to the radiation field, making the 
problem nonlocal and nonlinear. The reason for the nonlocality is that the radiation 
field in principle depends on absorptions and emissions from all points in the gas 
within the distance over which photons can scatter before they are thermalized. In 
general this distance is large. The reason for the nonlinearity is primarily that the 
integrated mean intensity Jti depends on the population numbers, which makes the 
statistical equilibrium equations (2.1) nonlinear. Moreover, the intensity IYll also 
depends on the population numbers in a nonlinear way, as we shall see shortly. 
Thus, the calculation of the particle densities ni, poses a highly coupled, nonlocal 
and nonlinear problem. 

The dependence of the intensity on the population numbers comes from the 
expressions for the absorption coefficient K,,, and emission coefficient j,, which in 
the case of complete redistribution can be written as [l, p. 3971 

K vp = xv, + QJ, ~)(ni - G,n,) (2.8) 

jvfl =j,c + (A/i/Bji) Gtyaq(v, P) nj (2.9) 

for i <j. 
In these equations K,, and j,, are the background opacities and emissivities, 

which are here assumed to be known and fixed. It is straightforward to allow them 
to vary with ni if necessary. The quantity G, is equal to the ratio of the statistical 
weights of the two levels 

G, = gi/gj = Bji/BO. (2.10) 

Equations (2.8) and (2.9) can be used also for bound-free transitions provided the 
expression (2.10) for G, is changed and made frequency-dependent Cl, p. 3973. For 
bound-bound transitions the expression for the frequency-dependent cross section is 

a&, P) = B&h@4 by,,. (2.11) 
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To close the problem, we finally specify the incoming intensity at the top of the 
atmosphere and the outgoing intensity at the bottom of the atmosphere. For the 
purpose of illustrating the basic methods it is sufficient to take I, ( -p, r, = 0) = 0 
and L (CL, L = L) = S,, (LA w h ere S,, is the source function 

S,, =.ivp16w. (2.12) 

For a discussion of a more accurate lower boundary condition, the reader is 
referred to [ 11. 

3. LINEARIZATION AND PRECONDITIONING 

To solve Eqs. (2.1)-(2.3) we shall employ a multi-dimensional Newton-Raphson 
method. Such a method was first used and proved to be very successful for non- 
LTE problems by Auer and Mihalas [ 111. This is the only type of scheme which 
appears sufficiently robust to handle a great variety of problems. However, the 
present formulation differs from that of Auer and Mihalas in several important 
respects: First, we use a Rybicki-type elimination scheme [12] which is favourable 
when the number of frequency-angles is large. Second, we linearize the first-order 
form of the transfer equation [9]. This is much simpler than linearizing the second- 
order form of the transfer equation. Third, we precondition the statistical equilibrium 
equations by eliminating passive scatterings from the equations [6, lo]. This has the 
advantage of not only increasing the accuracy at large optical depths, but also 
improving the stability of the solutions, since the dominant nonlinear terms in the 
rate equations are typically reduced analytically by 4-5 orders of magnitude. 
Finally, in Section 4 of this paper we show how to combine these methods with the 
methods of Scharmer [S, 71 for approximating the radiative transfer terms and 
solving the resulting equations. 

3.1. Linearization of the Rate Equations 

If nj”) is a current estimate of ni which does not satisfy the statistical equilibrium 
equations exactly, we must write instead of Eq. (2.1), 

nj”) 2 pi:)- 2 nj*)f?!‘)=Ej”), (3.1) 
i#i j#i 

where Ej”) is an error term, corresponding to the imbalance in the net transition 
rate out of (Ep) > 0) or into (Ej”) < 0) level i. Since P$‘) and Ep) are determined by 
n j”) we use Eq. (3.1) to calculate Ei”) after each iteration. From Eq. (2.1) we deduce 
that the population numbers n!“) will converge to the correct values if Ej”) + 0 for 
all depths and levels. To obtain’the correct solution we now perturb nj”) and P!?) in v 
such a way that the error terms Ei”) disappear. Thus if 

,I”+ l) = n!“) + &I”) (3.2) 
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and 

p!?*‘)=pi,“‘+6p$), !I 

we require that the new solution is such that 

(3.3) 

(3.4) 
.j = i j=i 

Inserting (3.2) and (3.3) we obtain, by using (3.1) and neglecting all nonlinear 
terms of the type 6nj”) * 6P&!‘), a linearized equation in the perturbations 6nj”) and 
6Pi)?‘, 

(3.5) 
itr 

Using (2.4) and (2.5) we can express 6Pt) in terms of 6Z$) (since 6C, = 0 and Sd,, 
can be neglected) 

(3.6) 

where 61’“) is the perturbation in the intensity which corresponds to the pertur- 
bation in”The population numbers. To derive a closed set of equations for &(“I we 
must use the linearized transfer equation to express 616) in terms of 6nj”). This is 
done in the next section. 

3.2. Linearization of the Transfer Equation 

Let Zg), ICE), andj,, ‘cn) be current estimates of ZVP, K,, and jYP such that Zg) is given 
by 

p !g! = -“~)p$) +j’4 “fl (3.7) 

Linearizing (3.7) by perturbing ZVP, K,~, and j, and neglecting the nonlinear term 
we obtain [9] 

By defining the monochromatic optical depth t, in the usual way, 

(3.8) 
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and an equivalent source function perturbation 6Ss”,) as 

we can write Eq. (3.8) in the standard form 

The solution of this equation can be written 

(3.10) 

61$‘= A1”,‘[SSs”,‘], (3.12) 

where A$) is a frequency-dependent linear integral operator which we define in Sec- 
tion 4.1. 

The advantage of linearizing the first-order form of the transfer equation is that 
this equation contains only one nonlinear term, corresponding to photon 
absorptions. The nonlinearity of this term is unavoidable, since the number of 
absorbed photons in a gas is proportional to the number of photons and the num- 
ber of absorbing atoms. The second-order form of the transfer equation, however, 
contains nonlinearities which have no obvious physical interpretation, and which 
makes the linearization procedure much more tedious and probably also less well 
conditioned. 

By linearizing Eqs. (2.8) and (2.9) and combining the results so obtained we may 
express (3.10) in the form [9] 

where 

and 

ssg = p&p + cpny, (3.13) 

cl”’ = -a&v, p) Zc”,‘/K$ (3.14) 

cv’ = Gijaij(v, p)(Aji/Bji + ZI”,‘)/lc$ (3.15) 

By combining Eqs. (3.12) and (3.13) we see that we have managed to express 6Z,, 
as a linear integral operator acting on an, and 6ni. Thus we have constructed a 
complete system of linear equations for the corrections to the population numbers. 
In the remaining sections we show how to simplify and solve these equations. 

3.3. Preconditioning of the Rate Equations 

Up to this point, our approach has been essentially that of Kalkofen [9]. From 
now on we incorporate the efficient new tools which have so far been used only to 
solve linear problems [S-S]. Our first step consists in a preconditioning of the 
statistical equilibrium equations and of the error terms. This permits the solution of 
multi-level problems on computers with poor accuracy using single precision 
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arithmetic. However, the preconditioning is not essential for the methods developed 
in Section 4. 

A very important property of radiation transfer in spectral lines is the enormous 
variation of the photon mean free path from the core of the line to the wings. A 
photon emitted close to the center of the line will travel only a very short distance 
before being reabsorbed, whereas a photon emitted in the far wings may penetrate 
essentially the whole atmosphere without being reabsorbed. Transfer of radiation in 
spectral lines therefore occurs most efficiently in the wings of the line whereas the 
core plays an essentially passive role [lo, 131. It turns out that the passive core 
components can give rise to numerical problems if the optical depth in the line is 
very large. To avoid this problem we precondition [ 10, 61 the equations by 
introducing a new operator J/1,,, defined as the difference between Avlr and the 
unity operator, i.e., 

/I$‘=l-t&tl”,‘. (3.16) 

Combining (3.5), (3.6), (3.12), (3.13), (3.16) and using the Einstein relations we 
obtain after some algebra the following set of linear equations for 6n,. 

+ B&j”‘- G,nj”‘) 

i-l 

+ C {similar terms) = -Ey’. 
j=l 

In this equation S$’ and I&’ are defined as 

$‘)=lj’ jm 2 +h,,dvdp 
Z-10 ““, 

and 

(3.17) 

(3.19) 

Although Eq. (3.17) appears slightly more complicated than Eq. (3.5) it is much 
more advantageous from a computational point of view, since the dominant terms 
have been reduced by approximately a factor 6. Since 6 is on the order of 10 - 5 or 
less for strong lines we can see that preconditioning has removed the main reason 
for the numerical cancellation at large optical depths. Note also that of the terms 
which were orginally nonlinear, only two small contributions now remain. The first 
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comes from interactions with the continuum. The second and more important con- 
tribution comes from the nonlocal term, i.e., from the term containing the SA,,- 
operator. Preconditioning therefore emphasizes that the nonlinearity is primarily 
connected to the fact that non-LTE problems are nonlocal. Since preconditioning 
reduces the nonlinear terms by many orders of magnitude, it seems reasonable to 
suppose that it may also be important in preventing numerical instabilities from 
developing. 

Finally, we point out that the often-made assumption of “detailed balance in the 
lines” [ 141 is somewhat questionable. What actually happens at great optical depth 
is that I,, --) S,, which is equivalent to saying that the nonlocal term containing 
a/1,, disappears. But, as is evident from (3.17), we may still have interactions with 
the overlapping continuum which destroys the detailed balance in the lines. We 
therefore suggest that rather than assuming detailed balance in the lines, it is better 
to assume that J/1,, + 0. The system of equations thus obtained will still be non- 
linear but local, which makes the numerical solution simple. 

3.4. Preconditioning of the Error Terms 

To obtain high accuracy in the converged solution we must calculate the error 
terms accurately. To do this we must also precondition the calculation of the error 
terms El”) as defined by (3.1). By adding and subtracting S,, from I,, we obtain 

Ei”)= 2 {B,(ni”)-G,jn,!“))(J~)-S~)) 
j=i+ 1 

-Ajj6!$)nj”) + Bij(njn) - G,nj”)) 6:/),$,, 

i-l 

+ n(“) C, - njn) Cji} + C (similar terms}, (3.20) 
j= 1 

where 

(3.21) 

and 

(3.22) 

The whole purpose of writing Eq. (3.20) in this form is that Jr) - SC) can be 
calculated very accurately at large optical depths using the standard Feautrier 
technique [6] to calculate P,, - S, from 

P,,,-s,,=$$, 
vlr 

(3.23) 

where P,, is the average of the incoming and outgoing intensities. 
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We emphasize that the accuracy in the final solution depends only on the 
accuracy with which Ei”) is calculated, and is independent of the approximations 
that are made to generate the approximate equation for 6ni. A coarse frequency- 
angle grid would lead to poor accuracy in the final solution, but does not 
significantly affect convergence since the same type of errors is made in the 
representation of the matrix and in the calculation of error terms. 

4. METHOD OF SOLUTION 

So far we have been concerned mainly with setting up the multi-level non-LTE 
problem in such a way that we eliminate much of the nonlinearity from the 
problem. This procedure also gives high accuracy at large optical depths. In this 
section we concentrate on developing an efficient scheme for iterating the solution 
of Eqs. (3.17) towards convergence. As pointed out in Section 3.4 we are free to 
choose whatever approximations we like in the calculation of the approximate 
corrections 6ni. However, to obtain rapid convergence it is important to choose 
approximations which are qualitatively correct in essential respects. If this is not 
done, the solution will diverge or converge very slowly. 

For non-LTE problems with comparatively few levels and depth points, the time 
required to set up the matrix corresponding to the integral equations for 6ni 
dominates the total computing time. For problems with more depth points and 
levels, the time required to solve the matrix equation dominates. The essential idea 
of the present method for solving non-LTE problems is to introduce 
approximations which simplifies both the numerical representation and the solution 
of the matrix equation [S, 71. Since the nonlocalness introduced by the radiation 
field is the major reason for the numerical difficulties of solving non-LTE problems 
we have concentrated on simplifying the numerical representation of radiation 
transport mechanisms. The present numerical method is therefore intimately connec- 
ted to the physics of the problem. 

4.1. Approximating the Linearized Rate Equations 

The solution of Eq. (2.3) can be written 

(4.1) 

for an outgoing (p > 0) ray. In this equation S,, is the source function as defined by 
(2.12). If S,, varies much more slowly than exp( -zyP), then most of the con- 
tribution to I,,, comes from a fairly narrow range in T,,~. By assuming that S,, is 
linear in zVp we can estimte (4.1) by a one-point numerical quadrature formula of 
the type [5,7] 

z:,(qJ~n~,[S,l =w+s&g. (4.2) 
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For a semi-infinite medium the quadrature weight o+ is equal to one and the 
quadrature point r; is given by 

z+ =z,p+ 1. “N 

For a finite medium the expressions for CD+ and r; are different [7]. 

(4.3) 

For an incoming ray (p ~0) we obtain similar quadrature formulae, but the 
expressions for the weight and the quadrature point are now somewhat more com- 
plicated 

(J)- = 1 -e-%l, z - = Z”& ~ - 1. “P (4.4) 

In practical applications we set o - = 0 when z,~ -C 0.1 and use a diffusion 
approximation for rVfi > 10. Therefore, very few exponentials have to be calculated. 
The computing of exponentials is always an insignificant part of the total com- 
puting time. 

The advantage of using the one-point quadrature approximate relations between 
I,, and S,, is that they require only O(n,) operations as compared to the O(n,Z) 
operations required by other methods. Since n, may typically be in the range 
100-200 for problems involving large amplitude velocity fields the gain in com- 
puting time may be considerable. In spite of the simplicity, the quadrature formulae 
defined by (4.2)-(4.4) give errors in the population numbers which are only on the 
order of 20%. Note, however, that these approximate statistical equilibrium 
equations are combined with the exact rate equations such that the final solution is 
exact. 

Another important advantage of these approximations is that the quadrature 
point for the incoming rays, ry;, goes towards z,J2 at small optical depths. 
Physically, this happens because the radiation coming from very small optical 
depths tends to be weak, since the emission coefficient scales roughly as the 
absorption coefficient. When solving non-LTE problems, we typically use five or six 
depth points per decade in optical depth. On such a depth scale the point 2,,/2 is 
less than two depth points away from z,,, and thus the incoming radiation field is 
nearly local. Therefore, the numerical implementation of (4.4) results in a matrix 
which has a strongly upper triangular structure, as regards the spatial interactions. 
This structure permits a very fast solution of the matrix equation. 

To represent the statistical equilibrium equations, Eq. (3.17), numerically we 
replace the “exact” radiation transport operator CM’,“,) by the approximations 
implied by (4.2) and (4.4). The depth points r; and ry; will usually be located in 
between two grid points. To represent &Jr&) or S,,(zV;), we simply assume that 
S,, varies linearly between the two grid points closest to the quadrature point. 
These two grid points can be searched for rapidly by noting that r;‘, and zy; are 
monotone increasing functions of zVr and that zVlr increases monotonically with 
depth [S]. To represent the double integrals we use Gaussian quadrature for the 
angle integration and the trapezoidal rule for the frequency integration (see also 
[7]). The discretization of Eq. (3.17) is in fact very simple. 
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The linear interpolation formula used to represent S,,(r,+,) gives serious 
numerical inaccuracies at large optical depths [6]. To avoid this problem it is 
usually sutIicient to set 6/1, + = 0 when ryp 2 100. For certain problems with con- 
tinuum scattering [4, lo] it is much better to include a diffusion term for large and 
moderately large optical depths 

(4.5) 

where dz,@ is the difference in optical depth between two neighbouring grid points. 
The computing time required to set up the approximate rate equations using the 

method of this paper scales as 

t=c,~n,;n;n;n,. (4.6) 

where n,, is the number of radiative transitions, n, the number of depth points and 
nPnv is the number of frequency-angles. The time required for setting up this matrix 
is always less than the time required to solve a similar LTE problem. This is a 
reasonable computational effort. 

4.2. Approximations Made at Small Optical Depths 

The most distant interactions occur in the wings of spectral lines where the 
optical depth is small. As emphasized in Section 3.3 nonlocality is the most impor- 
tant source of nonlinearity. The treatment of radiation transport in the thin wings 
of the lines is therefore of considerable importance for the numerical stability of the 
solution. 

The calculations made so far indicate that the best approach to eliminating 
numerical instabilities is simply to set 

at small optical depths, z, < 0.1. This implies that the influence on the population 
numbers of the optically thin components of the radiation field is corrected for by 
lambda iteration, i.e., these particular components of the radiation field are lagged 
one iteration. In principle this could lead to somewhat slower convergence. Our test 
calculations indicate that this is not the case and that other important advantages 
are gained. 

In the optically thin limit the population numbers are governed by the radiation 
field whereas the influence of the population numbers on the radiation field is fairly 
weak and lambda iteration does not produce numerical instabilities. More impor- 
tant, however, is that lambda iteration guarantees that the radiation field used to 
calculate the population numbers is physically .meaningful whereas in a nonlocal 
linearization scheme we have no guarentee that the specific intensity implied in the 
linearization will even be positive! In this respect lambda iteration is much safer 
than linearization which can produce physical inconsistencies, such as the 
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occurrence of negative population numbers which usually lead to numerical 
instabilities. 

These numerical problems with the nonlocal radiation field were initially dis- 
covered when we attempted to solve the five-level Calcium problem with the VAL3- 
C model [15] using a depth grid which extended up to very high chromospheric 
temperatures. In the first iterations we found negative population numbers in the 
uppermost layers where the optical depth at line center of the Ca-K line was on the 
order of 10 -5. This was not expected on physical grounds, since in these layers the 
population numbers are almost entirely determined by the radiation field coming 
from below, and the non-LTE problem should be linear and trivial. The occurrence 
of negative population numbers came from the nonlocal matrix elements which 
coupled the local changes in the population numbers to the depth where the optical 
depth in the K-line was of order unity. Here the neglect of the nonlinear terms gave 
sufficiently large errors to produce unphysical answers. The whole problem dis- 
appeared completely when At,, was set to zero for z,,, < 0.1. These results indicate 
that these nonlinearities are caused by the fact that the nonlocal radiation field is 
bi-directional. 

Setting “TP = 0 also eliminates the most nonlocal matrix elements which creates a 
more or less pronounced band structure in the matrix equations. This property 
should be taken advantage of when solving these equations. 

4.3. Solution of the Matrix Equation 

The grand matrix of Eq. (3.17), which has the size (n,n,) x (n,n,), is assembled 
transition by transition. Looping over all frequency-angles we add up all the &4,,- 
operators with their corresponding weights into the linearized rate matrix. In the 
same frequency-angle loop the intensities ZvP, corresponding to the population 
numbers of the previous iteration, are calculated. These intensities are needed for 
the calculation of the d/1,, operators, the Ei terms and the Jadij terms. Since no fre- 
quency or angle-dependent quantities need to be stored, it is only the rate matrix 
itself that needs core memory. Furthermore, we renormalize the matrix so that the 
solution vector corresponds to the relative change of the population numbers 

&j”) = fJn~“)/n~“), (4.7) 

where nj”) are the population numbers of the previous iteration. This has the effect 
of decreasing the variation of c$‘) and cp) with depth which decreases the errors 
introduced by representing these functions with linear interpolation formulae. 

The equations are stored in the following order: For each depth point we first 
store the linearized particle conservation equation (2.2), which replaces the rate 
equation for level 1. Then on each of the following n, - 1 rows, we store the 
remaining rate equations for that depth. The next row contains the particle conser- 
vation equation for the next depth, and so on. Figure 1 shows the ordering of a 
matrix with six levels. The matrix consists of blocks, each containing n, x n, 
elements. The off-diagonal blocks contain the interactions with other depths. These 
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a level 1 
0 - level 2 

L: level 3 u 
w a level 4 
” 4 level 5 
z level 6 
w 
3 level 1 

el z 
level 2 

h 
level 3 

‘1 
z d 

level 4 
level 5 !4 
level 6 

INFLUENCE FROM 

depth I depth 2 depth 3 

.-NCIIJLn\E) -r4*1*YIU) -NO.Tmt\D 

xxxxxx 000000 000000 
xxxxxx oxoxxx oxoxxx 
xxxxxx ooxoxx ooxoxx 
xxxxxx xxoxox xxoxox 
xxxxxx xxxoxx xxxoxx 
xxxxxx xxxxxx xxxxxx 

000000 xxxxxx 000000 
oxoxxx xxxxxx oxoxxx 
ooxoxx xxxxxx ooxoxx 
xxoxox xxxxxx xxoxox 
xxxoxx xxxxxx xxxoxx 
xxxxxx xxxxxx xxxxxx 

FIG. 1. Ordering of equations and unknowns for an atomic model with 6 levels. Row number one 
represents the linearized equation of particle conservation for depth point number one in the 
atmosphere. The next live rows represent the linearized local and nonlocal equations of statistical 
equilibrium of that atomic level at the same depth point. It is assumed that transitions 1 -+ 2, 1 + 3, 
2 -t 3, 3 -P 4, and 4 + 5 are radiatively forbidden. The equations for the other depth points follow. 

interactions come from ‘the nonlocal components of the radiation field. It is this 
radiation field that destroys the diagonal structure of the grand matrix, thus being 
the source of the numerical expense of solving the matrix equation. 

As mentioned earlier, this radiation is almost local, which implies that most 
blocks far from the main diagonal contain only zeroes. In fact, as we go sufficiently 
high up in the atmosphere, all lines become optically thin and all off-diagonal 
blocks contain zeroes. On the other hand, as we go sufficiently deep down into the 
atmosphere all transitions become optically thick. In this limit we set S/i!, = 0 or 
make the diffusion approximation. At large depths, the matrix therefore contains 
zero or one block to the left of the main diagonal. 

From the discussion above it should be evident that the structure of the 
approximate rate-matrix is completely determined by our treatment of nonlocal 
radiative interactions occurring in the spectral lines. The approximate methods 
described in this and the previous sections simplify the numerical representation of 
these interactions in a way which allows an efficient solution method. 

We eliminate all nonzero elements to the left of the diagonal by ordinary 
Gaussian elimination. A test whether they are nonzero saves on the order of nln, 
multiplications per zero element. The computing time required to solve the matrix 
equation roughly scales as 

2 3 2 2 t = c2n,nl + c3n, n,. 

This scaling assumes that we are using a given number of depth point per decade in 
optical depth. The first term corresponds to the LU factorization and the second to 
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the “backsubstitution” process. This compares favorably with the Rybicki 
elimination scheme [12] for which the computing time is proportional to rrz$. 

4.4. The Iteration Algorithm 

To summarize the most important steps of the present method, we give here the 
iteration algorithm used for solving multi-level, non-LTE problems: 

(I) Initialize the population numbers by a first guess of the radiation field. 
Starting approximations like I,, = B,, where B, is the Planck function, or I, = 0 
[ 16 J usually are sufficient for final convergence (although somewhat more realistic 
starting approximations may sometimes be needed, see below, Section 5.2). 

(II) Set up the linearized, preconditioned rate equations (3.17) for &,/n, 
using the approximate 6n,+,-operator. At the same time calculate the error terms Ei 
and the Jbii terms. 

(III) Solve the resulting matrix equation by Gauss elimination of nonzero 
matrix elements. Update the population numbers ni” + I) = nj”) + dni”). 

(IV) Test for convergence. Return to (II) unless max 1 Gnj”)/nj”) 1 is sufficiently 
small. 

Usually the matrix equation does not change much after two or three iterations. It 
is therefore sufficient only to set up this matrix and L&factorize it two or three 
times; during the last iterations we only need to calculate the error terms and per- 
form the back substitution with the previous &i operator. 

5. NUMERICAL RESULTS 

The methods developed in the previous sections have been implemented in a 
general FORTRAN-77 program [ 171. This program solves multi-level problems 
with lines, overlapping continua, and photoionization continua and is more general 
than the code LINEAR, described by Auer et al. [18]. 

Some tests were made using parametrized atomic models and atmospheres. 
However, we discovered that realistic atomic and atmospheric models posed much 
more difficult problems. Two such calculations will be described here: a live level + 
continuum calcium problem and a three level + continuum hydrogen problem. The 
model atmosphere used in both cases was the VAL3-C solar atmosphere model 
[ 151. The electron densities were taken from the VAL3-C model and kept fixed. 

5.1. Calcium II 

A live-level + continuum atomic model was used with crosssections for 
collisional excitation and ionization from [ 193. The photoionization rates were 
calculated from given radiation temperatures. Five radiative transitions were 
included: the H and K lines and the IR-triplet. Voigt profiles were used for all live 
lines with microturbulence contributing to the Doppler width and with radiative, 
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van der Waals and Stark broadening considered. Forty-live depth points, 3 angle 
points, and 30 frequency points per line were used. 

Three different initializations were tried: I,, = B,, Iv,, =0, and two successive 
lambda-iterations from Iyp = B,. All three lead to good convergence. With I,,, = 0 as 
initialization, the initial population numbers departed by as much as a factor lo3 
from the converged solution. In spite of this very large initial error, the population 
numbers converged rapidly, as is shown in Fig. 2. 

This problem was solved with the same frequency, angle, and depth points using 
the code LINEAR-B [18]. The maximum relative difference between the two 
solutions was 1.3% in the population numbers and 2.5 % in the calculated line 
profiles. The differences are attributed to differences in background opacity routines 
and the coarse depth grid which gives different types of errors in the two programs. 
Both programs required five iterations to give a maximum relative error of less than 
0.1% in the population numbers. The CPU-time used on a CYBER 170/835 com- 
puter was 300 set for LINEAR-B and 30 set for the present program (in no case 
including initialization and printouts). 

5,2. Hydrogen 

A three level + continuum atomic model was used with cross sections for 
collisional excitation from [20, 211 and for collisional ionization from [22]. The 
Lyman continuum was solved in detail while the Balmer and Pachen continua were 
represented with radiation temperatures. Three lines were included: Lyman-a, 
Lyman-/?, and H-a, all with Voigt profiles. The Voigt-profiles for Ly-a and Ly-b 

1 

FIG. 2. Log(relative error) after iteration l-11 for a calculation with a five level + continuum 
calcium atom and the VAL3-C solar model atmosphere. The relative error is detined as max I($‘) - 
ny)/np’l. 
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were truncated at 6 Doppler-widths to mimic the effects of partial redistribution on 
the population numbers [23]. Sixty depth points, 3 angle points, 20 frequency 
points per line, and 10 frequency points in the Lyman continuum were used. 

Three different initializations were tried. I,, = 0 and I,, = B, led to numerical 
instabilities while initializing by two successive lambda iterations from I,, = B, 
leads to a smooth convergence, as is shown in Fig. 3. A maximum relative error of 
less than 0.1% in the population numbers required 8 iterations and 35 CPU set on 
a CYBER 170/835 computer (not including initialization and printouts). 

We also tried to solve this problem with the same frequency, angle, and depth 
points using the code LINEAR-B. It was, however, not possible to get convergence. 
A much more complicated starting solution was needed for this code-the standard 
procedure is to start with a simpler atomic model with only the Lyman continuum 
treated in detail and iterate to convergence. Next, this solution is used as a starting 
solution for additional iterations which also include the Ly-cc line. The third step, 
finally, is to treat the full three level + continuum model atom with the Lyman 
continuum and the Ly-a, Ly-/I, and H - a lines included [ 163. 

The fact that such a complicated procedure was not needed with the present 
program indicates good numerical stability. Also coarse depth grids led to a con- 
verged solution. Another indication is the total absence of artificial more or less 
adhoc fix-ups in attempts to prevent such things as negative population numbers. 

The whole iteration process for hydrogen is, however, more sensitive than for 
calcium to the depth scale used. A sufficiently dense grid is necessary in the narrow 
zone where the degree of ionization changes rapidly. The present program contains 

1 
-6.0 -5.0 -4.0 -3.0 -2.0 -1." k"REL 1. 0 

ERROR 

FIG. 3. Lo&relative error) after iteration l-11 for a calculation with a three-level $ continuum 
hydrogen atom and the VAW-C solar model atmosphere. 
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routines for establishing optimized depth scales; the reader is referred to [17] for 
details and a discussion of this aspect. 

5.3. Structure of the Matrices 

In Fig. 4 the grand matrix of the hydrogen calculation is shown in a coded form. 
Each symbol represents one matrix element in the (n,n, x n,n,) matrix. Increased 
darkness of the symbol denotes increased size of the element compared with the 
sum of all elements of that row; white represents elements identically equal to zero. 
A diagonal composed of dark (4 x 4) small matrices can be discerned. These small 
matrices represent the local influence. The first row of the small matrices represents 
the equation of particle conservation while the other rows represent the equations 
of statistical equilibrium. All the off-diagonal blocks contain the non local influence. 
At a certain depth the blocks to the left of the diagonal represent the influence on 

FIG. 4. The grand matrix of a hydrogen calculation. Darker symbols denote larger matrix elements. 
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the population numbers at that depth from depth points higher up in the 
atmosphere. This influence is carried by the incoming radiation. The off-diagonal 
blocks to the right represent influence from the lower layers carried by the outgoing 
radiation field. 

Several features are readily apparent: the absence of blocks far off the diagonal 
and a band structure. The bands are due to the discretization in angle and fre- 
quency and the fact that the optical depth in the H-a line is quite constant from 
depth point 3&50. Such zones with very small opacity in some frequency-angles 
also result in widenings of the diagonal band: the photons can travel further before 
they interact. 

The absence of elements far from the diagonal to the left is due to the properties 
of the approximate radiative transfer operator A + (see Section 4.1). 

FIG. 5. The structure of the nonlocal interactions, shown transition by transition. Transitions: (a) 
+x, (b) &J-B, (c) H-a, (d) Lyman continuum. 
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The absence of elements far from the diagonal to the right is due to the fact that 
the outgoing radiation field is lambda iterated when ry,, > 0.1. 

Another way of displaying the matrix is to separate the influence on the matrix 
from the different lines and continua. Such a representation is shown in Fig. 5. Each 
symbol denotes the contribution from one transition to one block of the grand 
matrix. When z,,, < 0.1 for all frequency-angles of the transition we have a strictly 
diagonal structure because of the lambda iteration of those optically thin com- 
ponents of the radiation field. When the transition is treated in the diffusion 
approximation a tridiagonal structure results. 

The wide structure of the matrix for the Lyman continuum is caused by the dense 

FIG. 6. The grand matrix of four different calcium calculations: (a) zero microturbulence, no 
macroscopic velocity field, no lambda iteration; (b) zero microturbulence, no macroscopic velocity field, 
lambda iteration for T,,, < 0.1; (c) with microturbulence from VAL3-C, no macroscopic velocity field, 
with lambda iteration for T yp ~0.1; (d) zero microturbulence, with macroscopic velocity field, with 
lambda iteration for T,,, <O.l. 
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depth-grid in the zone where hydrogen is ionized, and corresponding widenings of 
the diagonal band structure can be seen for Ly-cr and Ly-fi and for H-a in the lower 
layers. 

In Fig. 6 we have four matrices from calcium live-level + continuum problems. 
Figure 6a shows the appearance of a calculation with constant microturbulence and 
no lambda iteration of the thin components of the radiation field. Figure 6b shows 
the same problem but with the thin components lambda iterated. Those two 
matrices demonstrate clearly that the absence of elements to the far right is due to 
the lambda iteration while the absence of elements to the far left is due to the 
approximate radiative transfer operator n + itself. 

Figure 6c shows the matrix of a calcium calculation with a microturbulence 
variable with depth. The effect of this is that the lines are broadened more in the 
upper parts of the atmosphere. At some frequencies in the wings of the line deep 
down, we have almost no opacity and we can therefore see the broadened line core 
far above. The photons travel further before they interact and the result is more off- 
diagonal elements. This increased nonlocality is somewhat similar to the effect of a 
macroscopic velocity field; see Fig. 6d. There a calculation with zero microtur- 
bulence but with a systematic velocity field is shown. The macroscopic velocity field 
chosen is similar to those obtained from hydrodynamic calculations of free 
oscillations in the solar chromosphere [26]. 

The simple structure of the matrix with a more or less pronounced diagonal 
structure is taken advantage of when solving the system of equations. This results in 
considerable savings of computing time. 

5.4. CPU-Usage, Memory, and Accuracy Requirements 

The calculations were carried out with a CYBER 170/835 computer with a word 
length of 60 bits. The CPU-time used by the different parts of the program can be 
found in Table I. It is interesting to note that only 50% of the total time is spent on 
tasks directly related to the solution of the non-LTE problem. 

The memory requirement is totally dominated by the storage of the grand matrix 
which needs nz x nf words of memory. In the two problems discussed here, that 
matrix took over 80% of the memory used. 

One mega-word (M word) of memory is today quite common (would allow 20 
level problems to be solved with 50 depth points) and 256 M words will soon be 
available. 

The problems discussed in Sections 5.1 and 5.2 were also solved on a VAX- 
11/750 computer using single precision arithmetics (word length of 32 bits). The 
population numbers agreed to typically within lop6 of those obtained from the 
calculations with the CYBER 170/835 (word length of 60 bits) except in the upper- 
most seven depth points for hydrogen where the difference was up to 10 -‘. All 
calculated fluxes agreed to within 5 x 10 - 6. 

The fact that the accuracy obtained in the VAX-calculations was almost at the 
level of the machine accuracy is a result of the preconditioning of the equations. 
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TABLE I 

CPU-Usage of Different Routines (Cyber 170/835) 

Routine 

Background opacities 
Voigt profiles 
Initializations 

Disc I/O 
Printouts 

Normalizing matrices 
Error calculation 
Set-up of matrices 

Solving matrix equations 

(?) 

5 10 
1 1 
8 4 

12 15 
20 17 

3 6 
20 14 
13 13 
18 21 

Total (set) 57 65 

5.5. Performance on a CRAY-1 

The program has been run extensively on the CRAY-1 at SAAB in Linkiiping. 
We report here on our experience with respect to the vectorization of certain central 
parts of the program. 

Essentially the program consists of three parts: The first is the setting up of 
matrices. This is done in parallel with the second part which is the calculation of 
error terms, i.e., the solution of the transfer equation with known source functions. 
The time required for these tasks scales linearly with n,, PI*, n,, n,, and tends to be 
negligible for large problems. The setting up of matrices in the range of optical 
depths from approximately zVp - - 0.1 to zVP = 10 does not vectorize on current com- 
pilers. The solution of the transfer equation contains certain recursions which do 
not vectorize. Both times may be shortened by a reorganization of the program 
such that the innermost loop runs over frequency and angle instead over depth. 

Of more importance is the third part of the program which is the calculation of 
the corrections in the population numbers. This is done by solving the grand matrix 
equation of dimension ndim = nl. n,. Fortunately this part vectorizes easily and the 
simple structure of the approximate matrix can be taken advantage of in a 
straightforward way without destroying the vectorization. 

The grand matrix equation is solved as an ordinary two-dimensional matrix 
equation using LU-factorization. The absence of subdiagonal elements in the 
approximate matrix reduces the number of innermost do-loops without shortening 
the length of each of them, i.e., without reducing the advantage of vectorization. 
The absence of some of the elements above the diagonal reduces the length of inner- 
most loops by typically a factor 24 without interfering with the vectorization. Thus 
the simple structure of the approximate matrix can be taken full advantage of also 
on a vectorizing machine such as the CRAY-1. 
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As one example we may take the time required to solve a five level + continuum 
calcium II problem with 109 depth points. Here the setting up of matrices, the 
calculation of error terms and the calculation of corrections took 1.41, 1.29, and 
4.98 set, respectively, for a total of live iterations. Suppressing vectorization 
increased these times to 2.15, 1.62, 22.86 set showing that the most time-consuming 
part of the program vectorizes well. It should be added that the routine used for 
solving the matrix equation is not at all optimized for the CRAY and that con- 
siderably faster methods are available. 

The program has also been used by Saxner [27] for solving the non-LTE 
problem for an F-star model atmosphere using 40 depth points and a model atom 
consisting of 17 levels + continuum. The total time required for a converged 
solution was only 18 sec. 

To summarize, we think that the methods described in this paper are well suited 
also for vectorizing machines and that problems with say n, = 40, n, = 35 may be 
solved using not much more than a minute of computing time on a CRAY-1 having 
3 M words of memory. 

6. CONCLUDING REMARKS 

We have described a new approach to the numerical solution of multi-level, non- 
LTE problems. The basic philosophy of this approach was to develop numerical 
methods from certain simplifications which are natural from analyzing the physics 
of the problem [S, 71. It is the nonlocal components of the radiation field which 
cause the numerical problems of solving non-LTE problems. The simplified descrip- 
tion of these nonlocal components is the basic idea of the present methods. We are 
convinced that this approach to the solution of non-LTE problems will offer 
promising possibilities for future studies of complex problems involving radiative 
transfer, since it is much more efficient than other existing methods and also easier 
to generalize. 

The multi-level method described in this paper is a complete linearization method 
which takes full account of the nonlocal and nonlinear interactions occurring in a 
radiating gas. The present method is simple: it involves no equivalent two-level 
iterations for initializing the solution, no lambda iterations for smoothing the 
solution and no SOR iterations to enhance the speed of solving the linearized rate 
equations, and it does not use the variable Eddington factors of Auer and 
Mihalas [24]. The present method is ideal for studies involving velocity fields and 
therefore has many important future applications. Finally, the method illuminates 
the physical nature of nonlocal radiative interactions in spectral lines and therefore 
should be of value for understanding the complicated thermodynamics occurring in 
a moving, radiating gas. 

The present methods form the basis of a new general multi-level non-LTE 
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program [ 171. Calculations made with this program have shown the methods to be 
stable, accurate, and very fast. 

We have made some preliminary tests with a partial redistribution formulation 
similar to that of Scharmer [8]. The modifications were very easy to program, 
requiring only some 50 extra lines of coding. Tests made to solve Ca K problems 
indicate that the method works very well even though the convergence is somewhat 
slower than for the case of complete redistribution. 

In addition we worked on a method for solving multi-dimensional problems 
which should be ideal for situations where vertical transfer effects are more impor- 
tant than horizontal transfer effects. It is based on the fact that the influence on the 
population numbers of the optically thin components of the radiation field can be 
corrected by lambda iteration and need not be taken explicitely into account when 
constructing the Ai operator. This implies that for situations where the horizontal 
length scale is much greater than the vertical length scale the matrices 
corresponding to horizontal transfer effects will be tridiagonal which considerably 
reduces both core storage requirements and the computing time required to solve 
the resulting very large matrix equations. 
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